Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Frank R. Fronczek

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.109$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

The pseudoguaianolide peruvin

The title compound, ($3 \mathrm{a} R, 4 \mathrm{a} S, 7 \mathrm{a} R, 8 S, 9 \mathrm{a} R$)-decahydro-7a-hydroxy-4a,8-dimethyl-3-methyleneazuleno[6,5-b]furan-2,5dione, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, from Ambrosia artemisiifolia, has its sevenmembered ring in a twist conformation. Molecules form intermolecular $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds of length 2.920 (2) \AA.

Comment

The title ambrosanolide-class sesquiterpene lactone, (I), has been isolated from several species of Ambrosia (Compositae), including A. peruviana (Joseph-Nathan \& Romo, 1966), A. confertiflora (Yoshioka et al., 1970), A. tenuifolia (Oberti et al., 1986; Schmeda Hirshmann et al., 1986), A. cumanensis (Del Amo \& Anaya, 1978), and A. artemisiifolia (hog-weed; Porter \& Mabry, 1969; Rybalko et al., 1979; Watanabe et al., 1981). It has been shown to have allelopathic activity, stimulating the germination of witchweed (Fischer et al., 1990), and inhibiting germination of lettuce and growth of rice seedlings (Watanabe et al., 1981). It has also been shown to have insect antifeedant activity (Bloszyk, 1988).

(I)

The cyclopentanone ring is trans-fused to the sevenmembered ring, and the lactone ring is cis-fused at $\mathrm{C} 7-\mathrm{C} 8$ (Fig. 1). The conformation of the seven-membered ring is nearest the twist chair, with C 10 on the local C_{2} axis. Parthenin (Fronczek et al., 1989), which differs from peruvin only by having a $\mathrm{C} 2=\mathrm{C} 3$ double bond and having the lactone cisfused at $\mathrm{C} 6-\mathrm{C} 7$ rather than $\mathrm{C} 7-\mathrm{C} 8$, has the seven-membered ring in the chair conformation, also with C 10 on the local symmetry axis (Table1). The cyclopentanone ring of peruvin is near the envelope conformation, with C 1 at the flap position, and the lactone ring is in a flattened envelope, with C 7 at the flap. Molecules are linked by intermolecular hydrogen bonds into chains in the [001] direction (Table2).

The cell dimensions of peruvin at 298 K are $a=7.1425$ (8), $b=12.0672$ (8) and $c=8.2319$ (6) \AA, and $\beta=103.802(7)^{\circ}$.

Experimental

Crystals of (I) were kindly provided by Amber Hale, Marwa Donia and Flor Mora, who isolated the compound from Ambrosia artemisiifolia.

Received 20 June 2002

Accepted 4 July 2002
Online 19 July 2002

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$

$M_{r}=264.31$
Monoclinic, $P 2_{1}$
$a=7.0647$ (8) A
$b=12.0073$ (13) \AA
$c=8.1788$ (11) \AA
$\beta=103.247$ (8) ${ }^{\circ}$
$V=675.33(14) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4
 diffractometer

$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.757, T_{\text {max }}=0.791$
2686 measured reflections
2400 independent reflections
2395 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
$S=1.10$
2400 reflections
176 parameters
H-atom parameters constrained

$=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0696 P)^{2}\right.$
$\quad+0.3022 P]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
=
2400 reflections
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0696 P)^{2}\right.$ $+0.3022 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$D_{x}=1.300 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=21.1-43.5^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, colorless
$0.47 \times 0.35 \times 0.32 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=74.9^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-13 \rightarrow 15 \\
& l=-10 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: } 2.0 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{C}^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 4$	$1.211(3)$	$\mathrm{O} 4-\mathrm{C} 1$	$1.450(2)$
$\mathrm{O} 3-\mathrm{C} 12$	$1.210(3)$	$\mathrm{C} 11-\mathrm{C} 13$	$1.328(3)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-41.16(18)$	$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$-10.39(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$21.2(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-8.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$6.5(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-72.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$-30.98(19)$	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$38.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$43.62(17)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	$50.5(2)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$-63.3(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12$	$9.80(19)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-12.6(3)$	$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	$-1.5(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$61.2(2)$	$\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2$	$-5.6(2)$
$\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$7.79(19)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	2.09	$2.920(2)$	169

Symmetry code: (i) $x, y, z-1$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ bond distances of $0.95-1.00 \AA, \mathrm{O}-\mathrm{H}$ distances of $0.84 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom ($1.5 U_{\text {eq }}$ for OH and methyl groups), and thereafter treated as riding. A torsional parameter was refined for each methyl and OH group. The absolute configuration was determined by refinement of the Flack (1983) parameter. The reported enantiomer, which agrees with the accepted configuration of sesquiterpene lactones from higher plants (Fischer et al., 1979), yielded $x=$ 0.1 (2), while the inverse configuration yielded $x=1.1$ (2).

Figure 1
The atom-numbering scheme and ellipsoids at the 50% probability level for (I).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1996-97)-ENH-TR-10, administered by the Louisiana Board of Regents. The author is grateful to Amber Hale, Marwa Donia, Flor Mora and Wolfgang Schühly of the Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, for providing the crystals.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bloszyk, E. (1988). Pr. Nauk Inst. Chem. Org. Fiz. Politech. Wroclaw. 33, 109112.

Del Amo, S. \& Anaya, A. L. (1978). J. Chem. Ecol. 4, 305-313.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fischer, N. H., Olivier, E. J. \& Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach \& G. W. Kirby. Vienna: Springer.

Fischer, N. H., Weidenhamer, J. D., Riopel, J. L., Quijano, L. \& Menelaou, M. A. (1990). Phytochemistry, 29, 2479-2483.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fronczek, F. R., Vargas, D., Fischer, N. H., Chiari, G., Balza, F. \& Towers, G. H. N. (1989). Acta Cryst. C45, 2006-2010.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Joseph-Nathan, P. \& Romo, J. (1966). Tetrahedron, 22, 1723-1728.

organic papers

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Oberti, J. C., Silva, G. L., Sosa, V. E., Kulanthaivel, P. \& Herz, W. (1986). Phytochemistry, 25, 1355-1388.
Porter, T. H. \& Mabry, T. J. (1969). Phytochemistry, 8, 793-794.
Rybalko, K. S., Konovalova, O. A. \& Petrova, E. F. (1979). Khim. Prir. Soedin. 4, 578-579.

Schmeda Hirshmann, G., Bohlmann, F. \& Jakupovic, J. (1986). Rev. Latinoam Quim. 17, 200-202.
Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.
Watanabe, S., Kobayashi, A. \& Yamashita, K. (1981). Agric. Biol. Chem. 45, 2919-2920.
Yoshioka, H., Renold, W., Fischer, N. H., Higo, A. \& Mabry, T. J. (1970) Phytochemistry, 9, 823-832.

